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ABSTRACT: The Human Proteome Project was launched in September 2010 with the
goal of characterizing at least one protein product from each protein-coding gene. Here
we assess how much of the proteome has been detected to date via tandem mass
spectrometry by analyzing PeptideAtlas, a compendium of human derived LC−MS/MS
proteomics data from many laboratories around the world. All data sets are processed
with a consistent set of parameters using the Trans-Proteomic Pipeline and subjected to a
1% protein FDR filter before inclusion in PeptideAtlas. Therefore, PeptideAtlas contains
only high confidence protein identifications. To increase proteome coverage, we explored
new comprehensive public data sources for data likely to add new proteins to the Human
PeptideAtlas. We then folded these data into a Human PeptideAtlas 2012 build and
mapped it to Swiss-Prot, a protein sequence database curated to contain one entry per
human protein coding gene. We find that this latest PeptideAtlas build includes at least
one peptide for each of ∼12500 Swiss-Prot entries, leaving ∼7500 gene products yet to be confidently cataloged. We characterize
these “PA-unseen” proteins in terms of tissue localization, transcript abundance, and Gene Ontology enrichment, and propose
reasons for their absence from PeptideAtlas and strategies for detecting them in the future.
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■ INTRODUCTION

A key goal in the field of proteomics is to characterize the entire
complement of protein forms for a given species. This goal
includes describing not only the most common protein form
produced by each gene, but also its variants, including splice
variants, post-translational modifications, products of enzymic
processing, and different forms resulting from genetic variation.
Equally important are the efforts to characterize which proteins
are abundant in the various tissues and cell types, which are
abundant during certain developmental stages, and which are
abundant under various biological or environmental conditions.
The Chromosome-centric Human Proteome Project (C-

HPP),1 launched in 2010,2 has taken as a manageable first step
to characterize a single protein form corresponding to each
currently identified protein-coding gene. This international
effort has divided this ambitious goal among over two dozen
countries comprised of multiple groups that will work
collectively on identifying all of the proteins from their
respective individual chosen chromosome. A variety of survey
and targeted approaches will be used by the C-HPP groups, but
all participants will find it useful to understand the baseline
proteome coverage from extant MS data sets.
There are currently two primary proteomics methods: the

identification of peptides or proteins via mass spectrometry,
primarily LC−MS/MS, and the identification of proteins via
immunoactivity such as immunohistochemistry using protein
specific antibodies. In order to assess our progress toward
identifying one protein form per coding gene, we must find out

which proteins have been identified using each of these
techniques.
The Human PeptideAtlas is uniquely suited to answer this

question for LC−MS/MS. The broader PeptideAtlas project
was begun nearly a decade ago to accurately reinterpret LC−
MS/MS data from diverse sources and then map the resulting
peptide identifications to genomes, in particular to the human
genome.3 In our laboratory’s initial PeptideAtlas publication we
identified peptides mapping to 27% of the human genes in
Ensembl,4 albeit with a gene/protein false discovery rate (FDR)
likely 10% or greater. Over the years we have continually added
publicly available human data to PeptideAtlas, and learned how
to better control false identifications. In early 2012, the 1%
protein-level FDR Human PeptideAtlas surpassed 50% genome
coverage with the addition of several high-protein-coverage cell
line data sets.5−9

The Human PeptideAtlas is a compendium of many different
experiments470 to date. Importantly, PeptideAtlas reinter-
prets all data using a uniform computational pipeline, the
Trans-Proteomic Pipeline,10 to a stringent protein FDR.
PRIDE11,12 is also a comprehensive proteomics data repository,
but, rather than reprocess the raw data, it presents the peptide
and protein identifications submitted by each investigator
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without further validation. Because protein inference methods
vary considerably in the FDRs of their final protein lists, the
FDR of all the protein identifications in PRIDE combined
cannot be easily assessed. Further, when protein identifications
from multiple sources are combined, the resulting FDR is
always higher than the average FDR of the contributing
experiments. This elevated FDR is due to the fact that, while
the sets of true positives (correct identifications) of the various
experiments tend to overlap, the false identifications tend to be
randomly distributed.13

The Global Proteome Machine Database14,15 (GPMDB),
like PeptideAtlas, reprocesses raw data via a uniform pipeline.
Further, it implements an automated process to scour the
literature for publicly available data, and thus contains many
more data sets than PeptideAtlas. The GPMDB Guide to the
Human Proteome lists, by chromosome, the number of peptide
observations for each Ensembl identifier along with the lowest
(best) expectation value for that protein. One can apply any
criteria one wishes to filter these lists and yield a final list of
identified proteins. However, it is difficult to calculate the FDR
for such a list. The expectation values are calculated with
respect to each individual experiment. They have little meaning
when calculating an FDR for results from multiple experiments
combined. Indeed, PeptideAtlas is the only large compendium
of shotgun proteomics results with a well-defined and stringent
protein FDR for the entire compendium combined.
In the current work, we first increase the proteome coverage

of PeptideAtlas by incorporating additional publicly available
data sets, emphasizing experiments that identify classes of
proteins missing from PeptideAtlas. The resulting Human
PeptideAtlas build covers 62.4% of the human proteome as
defined by Swiss-Prot with a protein-level FDR of 1%. We then
analyze the remaining 37.6% to understand why these proteins
are not yet included and to suggest strategies for observing
them in the future efforts of the C-HPP.

■ EXPERIMENTAL PROCEDURES
We judiciously added publicly available data to PeptideAtlas for
the specific purpose of increasing the number of protein
identifications. Our aim was to obtain a large number of new
identifications by adding a moderate amount of data. First we
added two large plasma data sets and one large cell line data set
that had recently been contributed. We then looked for
promising data in the GPMDB using two strategies: (a)
reviewing Data sets of the Week, which tend to be high quality
data sets, and selecting those which were very high quality, used
new MS technology, had low-complexity samples due to a
filtering method, or used cell types or tissue types not yet in
PeptideAtlas, and (b) using an automated process to select
GPMDB data sets containing many higher-confidence identi-
fications for proteins not yet in PeptideAtlas. We also
considered all articles published in Molecular and Cellular
Proteomics that referenced the Tranche data repository16 in the
main text, and selected from these data sets using the same
criteria we used for GPM Data sets of the Week.
We selected a total of 27 data sets and were able to obtain 17

in full or almost in full (four from the authors, two from
PRIDE, and 11 from Tranche) and four in large part (from
Tranche). The remaining six data sets had been deposited in
Tranche but could not be retrieved after multiple attempts,
emphasizing the need for a stably funded publicly accessible
repository for raw mass spectrometry data. One of the 17 full
data sets was available only in Scaffold (Proteome Software)

format and was not usable in our pipeline. Of the 20 full or
partially downloaded data sets, 17 could be processed fully or
partially using X!Tandem17 + K-score.18 These, along with the
two large plasma data sets and the large cell line data set, were
added to the Human PeptideAtlas. All 20 are listed in Table S1,
Supporting Information.
Among the added data sets were several that were expected

to provide coverage of protein categories shown to be under-
represented in PeptideAtlas by Gene Ontology analysis (data
not shown), including samples of vitreous humor to increase
coverage of proteins of sensory perception, seminal plasma to
increase coverage of proteins of the reproductive system, a data
set identifying new integral membrane proteins, and experi-
ments targeting signaling proteins. Other data sets were
selected to cover additional sample types not previously
included in PeptideAtlas (e.g., mitotic spindle, nucleosome,
and colorectal tissue).
These data sets, along with all the data sets we had included

in the previous build, were processed through the latest
PeptideAtlas build pipeline19 to produce a final protein set with
an FDR close to 1%. Briefly, all data sets were searched against
a target-decoy sequence database consisting of the International
Protein Index database20 (IPI) and cRAP common contami-
nants (www.thegpm.org/crap), plus one decoy sequence for
each target entry. Results were processed using the Trans-
Proteomic Pipeline.10 Identified peptides were mapped to a
protein sequence database that included IPI v3.71,20 Ensembl
v67.37,11 and the 2012_05 release of Swiss-Prot,21,22 including
splice variants and representing 20244 protein-coding genes. A
PSM (peptide-spectrum match) FDR threshold of 0.0002 was
applied to each data set to yield a list of 218 799 distinct
identified peptides and a protein-level FDR of 0.8% as
computed by Mayu.13 See Table 1 for comparison with
previous build.

Over 62% (12629) of the Swiss-Prot entries were found to
contain at least one identified peptide in either its canonical
form or one of its variant forms. (Thirty-six entries identified
only by semitryptic or nontryptic peptides are not included in
this tally.) These entries formed the list referred to herein as
PA-seen and the remaining 7614 entries formed the list PA-
unseen. Note that in some cases two or more proteins in the
PA-seen list have identical or overlapping sets of identified
peptides. The PA-seen list is not intended to be a parsimonious
(minimal-redundancy) protein list but to contain all Swiss-Prot
entries with any peptide evidence in this atlas build.
About 1% (2397) of the distinct peptides mapped only to a

sequence in either IPI or Ensembl and not to any Swiss-Prot

Table 1. Human PeptideAtlas, Before and After Recent
Addition of Publicly Available Data

Human
PeptideAtlas
June 2012

Human
PeptideAtlas
October 2012

percent
increase

Experiments 353 470 33%
PSMs (peptide-spectrum
matches)

14273527 43428145 204%

Distinct peptides 189620 253690 34%
Swiss-Prot entries with at
least one identified
peptide

11524 12629 9.6%

Swiss-Prot coverage 56.9% 62.4%
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sequence. A parsimonious mapping of these peptides covers a
total of 1291 IPI or Ensembl identifiers.

■ RESULTS AND DISCUSSION
By way of our effort to fill the protein gaps in the Human
PeptideAtlas, we supplemented our proteomics efforts with
publicly available data sets, as described in the Experimental
Procedures. Table 1 shows the current Human PeptideAtlas
build details and compares it to the previous build. The Human
PeptideAtlas now contains 470 experiments, a marked 32%
increase from a year ago. The distribution of experiments across
different tissues, cell types, and body fluids is provided in Table
2. This addition of experiments doubles the number of peptide
spectrum matches, increases by 33% the number of distinct
peptide identifications, and increases the coverage of Swiss-Prot
entries from 56.9 to 62.4%.
Because the human section of Swiss-Prot is intended to

represent the scientific community’s current best estimate of
the complete set of human protein coding genes, we consider
only Swiss-Prot protein sequences in the current analysis.
Henceforth, we will refer to the covered Swiss-Prot entries as
PA-seen and those Swiss-Prot entries unobserved in PeptideAt-
las as PA-unseen.
Many of the PA-unseen proteins have been reported in the

results of various shotgun proteomics experiments. In fact, most
have been reported in the PRIDE database. We calculated the
Swiss-Prot coverage of PRIDE by first downloading all protein
identifications for all 3694 human experiments (in PRIDE an
experiment refers to a single LC−MS/MS run, whereas in
PeptideAtlas, an experiment refers to a collection of LC−MS/
MS runs performed on a single sample or closely related set of
samples.) using PRIDE Biomart, 70% of which contained a
UniProt accession (54182 distinct). We mapped these to Swiss-
Prot using PICR,23 obtaining 24435 distinct accessions. We
removed accessions that were not valid in Swiss-Prot to obtain
a list of 18935 Swiss-Prot accessions, representing 93.5% Swiss-
Prot coverage. However, many experiments reported in PRIDE
and elsewhere employ far less rigorous standards for protein
identification than we do at PeptideAtlas. Further, simply taking
a union of a large number of experiments causes the false
positives to pile up. A simple computational simulation
demonstrates that if the protein FDR for each of the 3684
human experiments in PRIDE is assumed to be a random value
between 0.5% and 5%, and if the number of proteins identified
by each experiment is a random value between 100 and 1000,
then the false identifications alone will cover 93% of the
proteome (see Figure S1, Supporting Information, for
computer code). Many of the PA-unseen proteins that are
identified in PRIDE are correct identifications, but we cannot
easily discern which ones. These results stress the importance
of a uniform analysis pipeline and further illustrate that there
are many gene products yet to be detected by mass
spectrometry.
To better understand how the goal of the C-HPP can be

achieved through mass spectrometry, we explored in detail the
proteins listed as PA-unseen. We examined their Swiss-Prot
annotations, the tissues in which they had been detected via
immunohistochemistry, their transcript abundances, and the
properties they have in common via Gene Ontology analysis.
We also calculated their basicity, hydrophobicity, and number
of extramembrane tryptic peptides. The results of all these
analyses are presented in a master table of all Swiss-Prot entries,
Table S2 (Supporting Information). We developed several

reasons why a protein may be PA-unseen, and we discuss them
below, beginning with the more obvious and proceeding to the
more subtle.

Table 2. Fifty-two Sample Types Included in the Human
PeptideAtlas

sample type experiments
total PSMs
(1000s)

blood plasma 143 28238
cell line Jurkat T-cell 79 655
cell line HEK293 30 4181
T-cell 27 117
brain 22 163
lung 20 152
B-cell 16 72
cell line ES iPS 12 908
blood PBMC 11 299
monocyte 10 102
neutrophil 10 141
nucleosome 10 82
cell line HeLa 9 1575
cell line LNCaP prostate cancer 5 18
cell line K562 erythroleukemia 4 118
urine 4 3
blood platelets 3 3124
breast 3 45
cell line HFH primary human fetal
hepatocytes

3 12

cell line Huh7 (hepatocarcinoma) 3 7
cell line U2OS 3 166
hair 3 21
semen plasma 3 109
cell line JCaM (LCK-deficient T-cell line) 2 1.2
cell line THP-1 2 3
cell line unspecified 2 1324
mitotic spindle 2 116
placenta 2 353
prostate 2 125
purified adducin protein 2 0.3
saliva 2 17
adipocyte 1 431
blood red cell 1 2
bone 1 14
cell line Caco-2 epithelial 1 9
cell line Colo-205 mitochondrial 1 1.2
cell line HCV-hh5 1 7
cell line HH4 immortalized hepatocyte 1 7
cell line SiHa 1 0.2
cell line SqCC 1 0.6
colorectal 1 5
cerebral spinal fluid (CSF) 1 25
eye lens 1 8
eye vitreous humor 1 205
heart 1 330
in vitro protein expression 1 0.2
nail plate 1 91
nuclear envelope 1 1.0
ovary 1 0.4
ovary cancer 1 3
pancreas 1 32
prostate cancer 1 701
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Protein Existence

Although Swiss-Prot is curated to include only sequences for
which there is some indication that the corresponding protein
exists, it is likely that some of these inferred genes are never
transcribed as mRNA or never translated into protein. These, of
course, will never be seen in any proteomics experiment. In
particular, of the 7614 PA-unseen proteins, only 6814, or 89%,
are annotated in neXtProt (version 3.0, release 2012−05−07,
corresponding to the same Swiss-Prot release with a 1:1
identifier mapping) as having evidence at the protein or
transcript level. The remaining 800 are predicted to exist on the
basis of homology or a gene model, or are simply annotated as
of “dubious” existence. Interestingly, 150, or 1.2%, of the PA-
seen proteins also bear these “no evidence” annotations. We are
investigating this set carefully for possible protein-level
evidence for neXtProt .
Conversely, some protein-coding genes are not included in

Swiss-Prot. In fact, 2397 peptides in the Human PeptideAtlas
map only to entries in the IPI or Ensembl databases. These
peptides and the corresponding 1291 putative protein
sequences are not included in the analysis presented herein,
even though it is likely that most of these peptides are correct
identifications representing real proteins. Other protein-coding
genes have not yet been included in any comprehensive protein
sequence database, making them impossible to identify using
software based on database searching. De novo identification
algorithms,24 as they become faster and more accurate, will help
identify these, but currently present a formidable computational
task.

MS Workflow Limitations

Proteins known to exist are sometimes difficult to detect using
common shotgun proteomics techniques. We analyzed each
Swiss-Prot canonical form for several features which contribute
to LC−MS/MS detectability. Hydrophobicity, the tendency of
a molecule to repel water, was calculated as the fraction of total
residues that are highly hydrophobic (leucine, isoleucine, valine,
tryptophan, tyrosine, or phenylalanine); entries with a value of
>0.35 were labeled hydrophobic. Basicity, the acid-neutralizing
capability of a molecule, was calculated as the fraction of total
residues that are basic (histidine, lysine, or arginine), minus the
fraction that are acids (aspartic or glutamic acid); entries with a
value of >0.15 were labeled basic. Swiss-Prot transmembrane
region boundaries were used to determine which entries
represented integral membrane proteins and which residues
were extra-membrane residues. The total number of observable
peptides was calculated as the number of extramembrane fully
tryptic peptides of length 7−30.
Six PA-unseen proteins do not contain any tryptic peptides

between 7 and 30 residues, which is the effective peptide length
capability for most shotgun MS workflows. A prime example is
the 60S ribosomal protein L41, which has a 24-residue
sequence of MRAKWRKKRMRRLKRKRRKMRQRSK. By
our analysis, this is the PA-unseen protein with the second
highest transcript abundance (see Table S3, Supporting
Information); however, it does not contain any tryptic peptides
greater than two residues in length. For some other proteins, all
the tryptic peptides are fully or partially embedded in a known
or predicted transmembrane region; this is the case for 34 PA-
unseen proteins. Surprisingly, it is also the case for four PA-seen
proteins. One (P24311) has only a single PSM and thus,
according to Mayu analysis, has an 18-fold greater likelihood
than multiply observed proteins of being an incorrect

identification (Mayu estimates the protein level FDR for single
PSM hits at 8% vs 0.45% for multiple PSM hits). For two of the
proteins (Q9P0S9, P58511), the transmembrane domains are
predicted theoretically; the observed peptides can be
considered evidence that the predictions may be incorrect.
The fourth protein (P52511), predicted by similarity to another
protein to span the membrane five times, has two splice
isoforms (P52511−3 and P52511−5) that are missing large
chunks near the N-terminus. Since these deletions disrupt some
of the predicted membrane spanning regions, it is possible that
these isoforms are not membrane bound and that the observed
peptides came from these isoforms.
Other physiochemical protein properties, such as hydro-

phobicity, play a role in protein detection. Hydrophobic
proteins are often insoluble in trypsin digestion protocols, and
thus few, if any, peptides result from these proteins. Some of
this insolubility can be overcome with the use of detergents.
Unfortunately, many detergents are not compatible with mass
spectrometry analysis, and those that are show varying degrees
of effectiveness25.26 Very basic proteins are also difficult to
detect using the most common fragmentation technology, CID
(collision-induced dissociation). The basic residues provide an
abundance of protons, leading to high fragment charge states.
CID is most effective with charge states +2 and +3. To date, all
experiments in the Human PeptideAtlas employ CID. ETD
(electron transfer dissociation), a newer technology, allows
detection of higher charge density peptides and allows better
detection of basic proteins.27 High proportions of PA-unseen
proteins are very hydrophobic or very basic (Table 3).

Membrane proteins present several challenges, particularly
integral membrane proteins (IMPs). IMPs are proteins with
one or more domains that span the phospholipid bilayer of
membranes.28 Because IMPs are bound to the insoluble
membrane fraction of a cellular protein preparation, they are
often discarded. Forgoing removal of the insoluble material
prior to digestion will produce some peptides from loops
outside the lipid bilayer in a technique known as membrane
shaving.25 However, the effectiveness of membrane shaving will
depend highly on the choice of protease and the amount of
protein exposed. Some proteins with multiple transmembrane
domains, such as G protein-coupled receptors, expose few
residues to the solvent. Use of multiple proteases with different
specificities will allow release of peptides from more loops than
use of trypsin alone and will thereby increase the number of
proteins detected in a given experiment.29 Additional
complications with detecting IMPs result from their low
abundance.30 Often, detecting IMPs requires membrane
enrichment followed by solubilization in detergent.2530,31

These IMP-enriching steps are usually excluded from shotgun
proteomic sample preparation unless specifically targeting these
proteins. A high proportion of PA-unseen proteins are IMPs
(35% vs 20%, see Table 3). Table 4 compares PA-seen and PA-

Table 3. Proportion of PA-seen, PA-unseen Proteins with
Properties Contributing to Poor Detectabilitya

PA-seen PA-unseen

Very hydrophobic 10% 24%
Very basic 1.3% 2.1%
Membrane protein 20% 35%

aVery hydrophobic = LIVWYF > 35%; very basic = (HKR)-(DE) >
15%; membrane protein = has Swiss-Prot feature TRANSMEM.
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unseen IMPs with regard to several characteristics. On average,
PA-unseen IMPs have fewer extramembrane tryptic peptides
and more transmembrane domains than PA-seen IMPs.
Sample Specificity

Some proteins may not be detected because they are present
only in sample types (tissues, cell types, body fluids) that have

not yet been analyzed. For a list of the sample types included in
PeptideAtlas, see Table 2.

Comparison with Human Protein Atlas. To discover
sample types that might yield many as-yet unobserved proteins,
we looked in the Human Protein Atlas32 (HPA, version 9.0,
2011−11−11) to gather tissue localization information for each
Swiss-Prot entry. The HPA project utilizes antibody based
proteomics to profile protein expression for about 12,000 genes
in many different human tissues, cancer types, and cell lines.
Forty-six different normal human tissues are covered, with
multiple cell types analyzed in many cases, for a total of 66
different tissue/cell type combinations. We analyzed these to
see if any were enriched for PA-unseen proteins (see Table S4,
Supporting Information). We first used PICR to map the
HPA’s Ensembl identifiers to Swiss-Prot. 12,073 Swiss-Prot
identifiers (8678 PA-seen, 3395 PA-unseen) were covered by
the mapping. For 2493 of these there was a positive antibody
reaction (level other than “Negative” or “None”) with good
reliability (“Supportive” or “High”), 331 of them in PA-unseen.
(When these 331 are added to the 12629 proteins in PA-seen,
we get a total of 12960 proteins with reliable LC−MS/MS or
antibody evidence, giving 64.0% total confident proteome

Table 4. Integral Membrane Proteins (IMPs) in Swiss-Prota

integral membrane
proteins

PA-seen PA-unseen

total Swiss-Prot IMPs 2695 2474
average total tryptic peptidesb 30.1 21.8
average extramembrane tryptic peptidesb 26.0 16.6
average protein sequence length 629 497
average number membrane spanning segments 3.3 4.8
percent secreted 5.5% 2.4%

aIncluded are all proteins with one or more known or putative
transmembrane domains as reported by Swiss-Prot. bOnly tryptic
peptides of 7−30 residues were counted.

Figure 1. GO Cellular Component terms highly enriched among PA-unseen proteins. Terms with enrichment at P-value ≤10−10 are shaded, and
only the nodes and edges which connect each of these terms with the root of the tree are depicted.
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coverage.) For each identifier, we listed and counted the
number of tissue/cell types for which there was an antibody
reaction with good reliability (Table S2, Supporting Informa-
tion, columns n_reliable_staining_HuProtA and tissues_HuPro-
tA). For each tissue/cell type we also counted the number of
proteins for which the HPA contained any reliable
(“Supportive” or “High”) reactivity at level “strong” (for
staining) or “high” (for annotated protein expression) (Table
S4, Supporting Information). Skeletal muscle myocytes, liver
hepatocytes, and kidney cells in glomeruli showed the highest
percentage of PA-unseen proteins (>10%). Samples from
skeletal muscle, liver, and kidney cells have not yet been
included in PeptideAtlas. Tissues from the digestive system had
the highest number of PA-unseen proteins, including gall
bladder (99), duodenum (87), upper stomach (83), lower
stomach (74), colon (79), small intestine (78), and rectum
(74). These tissues also have not yet been included in
PeptideAtlas. Thus, increasing the diversity of tissue types
analyzed in PeptideAtlas may help identify many of the PA-
unseen proteins.
Gene Ontology Analysis. To determine which Gene

Ontology (GO) terms are enriched among the PA-unseen
proteins, we employed the GOstats package33 (Bioconductor)
running under the R statistical software. UniProt accessions
(Swiss-Prot is a subset of UniProt) were mapped to Entrez
gene IDs, and then the map was reversed and multiple
mappings were resolved using the org.Hs.eg.db annotation
package. 1612 (8%) of the Swiss-Prot IDs were missing from
the map and thus were not included in this analysis. These
tended to be putative or poorly characterized proteins and the
majority (70%) were PA-unseen. The analysis hyperGTest was
run on the PA-unseen protein list with a P-value cutoff of 10−10

and parameters conditional=TRUE and testDirection=rep for
all three GO ontologies. See Figure 1 and Figures S2 and S3
(Supporting Information) for GO terms found to be over-
represented in PA-unseen. For each PA-unseen protein,
associated GO terms from these figures are listed in Table S2
(Supporting Information), column enriched_GO_terms.
Several of the experiments included in PeptideAtlas took

steps to enrich for membrane proteins. Still, membrane
proteins are poorly detected. All eight of the GO Cellular
Component terms found to be highly enriched in PA-unseen
are related to membranes, including two related specifically to
ion channel complexes that span the membrane multiple times
(Figure 1). Similarly, the GO biological process and molecular
function analyses found many terms related to membrane
proteins to be enriched in PA-unseen proteins (see Figures S2
and S3, Supporting Information).
GO biological process analysis shows that most olfactory

receptors are missing from PeptideAtlas (see Supporting
Information Figure S3). Not only are these receptors
membrane proteins, but they are located in a tissue not
represented in PeptideAtlas: the olfactory epithelium in the
nasal cavity.34

The remaining GO terms enriched in PA-unseen have no
clear explanation in terms of sample type, but other
explanations are proposed in the sections below.
A final note regarding sample specificity: many of the PA-

seen proteins were observed in only one type of sample in the
Human PeptideAtlas (Table S5, Supporting Information).
Because PeptideAtlas is far from comprehensive in its coverage
of different sample types, these proteins cannot be said to be
specific to these sample types. However, they may be

considered candidates for tissue or cell type specificity. The
particular proteins may be gleaned from Table S2 in Supporting
Information, columns n_sample_types_HuPA and sample_types
_HuPA.

Low Abundance and Transient Expression

Secreted proteins such as cytokines and hormones are
produced in very low abundance. They are among the least
abundant proteins in blood plasma and are rarely detected in
proteomics experiments.35,36 These proteins were seen by GO
analysis to be enriched in PA-unseen proteins in the previous
Human PeptideAtlas build (data not shown), but enough of
them were observed in the newly added data targeting signaling
proteins (Table S1, Supporting Information) that most of the
associated terms (extracellular region (CC); growth factor
activity, G-protein coupled receptor binding, cytokine receptor
binding (MF)) are no longer sufficiently enriched to appear in
Figure 1. Still, slightly more (9.5% vs 8.2%) PA-unseen proteins
bear the Swiss-Prot term “Secreted” than PA-seen (Table 4).
The term cytokine activity remains enriched in PA-unseen,
suggesting cytokines are still significantly under-represented,
perhaps because they are among the lowest abundance secreted
proteins. As additional work in secretome analysis is performed,
additional identifications of these rare proteins can be expected.
Use of multiple proteases will increase the detection of proteins
near the limit of detectibility by multiplying the number of
distinct peptides per protein. Because peptides from the same
protein differ in their detectibility, for some fraction of these
proteins, the additional peptides will prove to be more
detectible than those created by trypsin alone and will allow
detection of those proteins. Of course, for very low abundance
proteins, the component peptides will all be very low
abundance, and use of multiple proteases is not likely to help.
Transiently expressed proteins pose another challenge for

detection by shotgun proteomics. Some proteins are only
expressed during certain developmental or other biological
processes. One such example is the cyclins, which are
transiently expressed during, and regulate progression through,
the cell cycle. Thus, cyclins are not expressed in non-
proliferative tissues, while aberrant expression of cyclins is a
common feature of many cancers.37 Eight of the 25 cyclins in
Swiss-Prot are in PA-unseen. Another example is proteins
expressed only during fetal development. Data from fetal tissue
is not included in PeptideAtlas; accordingly, two biological
process GO terms related to development, pattern specif ication
and regionalization, are enriched in PA-unseen. Other proteins,
for example some neural and/or brain proteins (seen by GO
analysis to be enriched in PA-unseen proteins, see Supporting
Information Figure S2, neuropeptide receptor activity, and Figure
S3, neurological system process), have a very short half-life.
Transient expression and short half-life may present the same
difficulties as low-abundance.
We performed a transcript abundance analysis to test

whether protein nondetectability correlates with low transcript
abundance, as shown elsewhere.38 We used BioGPS39 to gather
transcript abundances for each Swiss-Prot entry, and compared
these data to the PA-seen and PA-unseen proteins. The
BioGPS database contains results for 138 samples covering 84
different tissue or cell line types. These were analyzed using an
Affymetrix U133a chip and a custom designed GNF1H chip,
together containing 18400 transcripts and variants covering
“14500 well characterized human genes”.40,41 14686 Swiss-Prot
IDs could be mapped to Affymetrix probe IDs using the ID
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mapping tool at uniprot.org.42 Intensities (average difference
(AD) of probe hybridization intensities) for each protein in
each of the 138 samples were obtained from the BioGPS cross-
reference matrix, and an average intensity across all 138 samples
was computed for each protein. The average intensity across all
138 tissue samples for the PA-seen proteins is much greater
than the average intensity for PA-unseen proteins (Figure 2), in
agreement with our expectation. We further examined those
PA-unseen proteins with the highest transcript abundance.
Some have properties already discussed here that hinder
detection (hydrophobicity, basicity, IMPs), but for others it is
unclear why they have not yet been observed (Table S3,
Supporting Information).
Informatics Limitations

To search all 470 experiments using X!Tandem consumed
about 138 CPU-weeks on a modest 2010-era compute cluster.
With each new build, only newly added data needs to be
searched, so these searches were spread out over many months.
However, if 100 compute nodes were available at once, it would
take only 10 days to search all the data. Seven additional CPU-
days were consumed processing and loading these results into
PeptideAtlas. This compute time grows approximately linearly
with the amount of data. Over the years, data set sizes have
tended to grow. However, assuming continuing speed-ups in
computing hardware, addition of more and ever-larger data sets
to PeptideAtlas appears to be sustainable.
There are several biological process and molecular function

GO terms enriched in the PA-unseen proteins (Figures S2, S3,
Supporting Information) for reasons as yet unknown. These
include terms related to DNA binding, transcription factor
activity, G-protein coupled receptor signaling pathways and
cyclic nucleotide metabolism. It is notable that all these

processes are regulated by or involve post-translational
modifications (PTMs). Binding of transcription factors and
other proteins to DNA is regulated by a large variety of PTMs,
including methylation, acetylation, phosphorylation and ubiq-
uitylation.43−47 G-protein coupled receptor signaling pathways
utilize phosphorylation extensively,48 and cyclic nucleotide
metabolism is regulated by phosphorylation.49 If these PTMs
are included in the database searches, it is possible that more of
these proteins could be detected, especially those with
abundances near the limit of detection. While it might be
argued that not all the peptides in such a protein will contain
PTMs, so the proteins should be detectable without searching
for the PTMs, searching for them will increase the number of
confidently identified peptides and allow more of these proteins
to pass the threshold for inclusion in PeptideAtlas. We expect
the resulting increase in total proteome coverage to be modest:
if 10% of the proteome is involved in processes regulated by
PTMs, and 10% of those proteins have abundances near the
limit of detection, then this approach will be of assistance in
detecting only an additional 1% of the proteome.
Twenty-two experiments in the Human PeptideAtlas

incorporated enrichment for phospho-peptides, and these
data were searched for phosphorylation modifications. Using
our standard search engine, X!Tandem, each potential
modification on a specific amino acid approximately doubles
the search time. Searching for potential phosphorylation on
serine, threonine, and tyrosine thus multiplied the search time
for these experiments about 8-fold. Searching for multiple
modifications could multiply the search time by a factor of 100
or more. With the emerging availability of large-scale cloud
computing resources, this can be computationally feasible.
However, one must also pay the price of an increased error rate

Figure 2. Microarray transcript analysis for proteins seen and unseen in PeptideAtlas. PA-seen proteins tend to fall into the higher mean intensity
bins (A) and have, on average, 2.5 times the mean intensity across all tissues (B, line 5). The microarray contained more probes for genes for PA-
seen proteins than for PA-unseen because the array was biased toward proteins of high general interest (B, line 4). See text for details.
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due to the enlarged search space. Better results may be
obtained by using recently developed software that addresses
the speed and accuracy issues inherent in searching for
PTMS.50−54

Finally, many of the PA-unseen proteins are likely in the data,
but are not detected with high enough confidence to meet the
very stringent thresholds implemented in PeptideAtlas. Future
improvements in informatics will improve this, but excluding
large numbers of false positives will always result in discarding
valuable true positives.

Estimating Observability

In order to assist researchers in prioritizing protein targets, we
formulated some observability metrics for putative proteins in
PA-unseen. First, we calculated an integer observability score
for each putative protein, with possible scores ranging from 0 to
5, based upon the Swiss-Prot evidence code, transcript
intensity, Human Protein Atlas evidence, and number of
observable tryptic peptides. Second, we classified each putative
protein as either observable, observable with special handling (for
secreted, integral membrane, hydrophobic, or basic proteins),
likely unobservable (for proteins with no transcript evidence),
and unobservable (for proteins with no observable peptides).
These metrics are detailed in Table S6 (Supporting
Information), and values for each Swiss-Prot entry are listed
in Table S2 (Supporting Information), columns observability_-
score, observability, and observability_notes. As expected, proteins
in PA-seen have higher observability scores, and are more likely
to be annotated as observable, than those in PA-unseen.

■ CONCLUSION

We have presented the state of the observed MS/MS proteome
using publicly available data in PeptideAtlas, uniformly
processed to high stringency to October, 2012. In order to
increase the number of observed proteins as much as possible,
we sought out many publicly available data sets expected to
increase proteome coverage. These new data sets did expand
PeptideAtlas to contain nearly three times as many PSMs, 15%
more peptide sequences, and 5% more proteins. This suggests
that similar efforts to bring in additional high quality data sets
will slowly increase the total protein coverage beyond the
current 62.4%, but likely not by major increments.
Some proteins not seen in LC−MS/MS experiments have

been detected in SRM experiments. PASSEL, the PeptideAtlas
SRM Experiment Library,55 is a recent addition to PeptideAtlas
that provides an online catalog of publicly accessible SRM
experimental results. Eight human experiments have been
contributed to date. Of the 917 human Swiss-Prot entries
represented so far in PASSEL, only 764, or 83%, are in PA-seen.
SRM is clearly an effective technology for detecting proteins in
PA-unseen. The related SRMAtlas resource,56,57 a collection of
SRM transitions covering all human entries in Swiss-Prot and
validated on both synthetic peptides and synthetic proteins, will
provide an excellent starting point for systematically attempting
to detect as-yet undetected proteins using SRM technology.
We intend that our analysis here will assist others in the

Human Proteome Project, especially those working to
complete coverage for individual chromosomes, in detecting
PA-unseen proteins. We suggest a three-pronged approach.
First, efforts should be made to obtain unrepresented sample
types such as tissues of the eye and nasal system. Second, we
suggest the application of more vigorous and sophisticated
experimental efforts to specifically capture membrane proteins,

very basic proteins, and very hydrophobic proteins. Third, we
recommend employing a systematic targeted approach using
SRMAtlas to immediately deploy assays for the low abundance
proteins. The effort for each protein should be focused on
samples shown likely to contain that protein based on transcript
and/or immunohistochemistry evidence. These strategies are
feasible and should be employed by all chromosome-centric
groups working in cooperation. Of course, this is not an
exclusive list and other approaches may also be successful.
Finally, several studies on promising sample types were not

included because their data are not yet publicly available.
ProtomeXchange now provides a centralized pathway for
submitting data to the proteomics data repositories, with LC−
MS/MS data being stored in PRIDE, and empirical SRM data
in PASSEL. Journals should require authors to make not only
results, but also raw data, public and available via
ProteomeXchange, to most efficiently advance the goals of
the Human Proteome Project.
If any readers have data that detect with high confidence

proteins not currently in PeptideAtlas, we encourage
submission of the raw data along with basic metadata to
ProteomeXchange or PeptideAtlas and they will be included in
future builds.
Complementing the comprehensive information provided for

all Swiss-Prot entries in Supporting Information Table S2, the
PeptideAtlas web interface (www.peptideatlas.org) provides a
powerful tool for exploring the data discussed here. A link to a
tutorial,58 along with a preformulated PeptideAtlas query to
retrieve all PA-seen proteins and other relevant resources, may
be found at www.peptideatlas.org/hupo/c-hpp. The raw data
for many of the 470 experiments in the Human PeptideAtlas,
including 17 of the 20 newly added data sets (see Table S1,
Supporting Information, for details), is available for download
at www.peptideatlas.org/repository.
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